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Abstract: Quantum computing is one of the most promising solutions for solving optimization
problems in the healthcare world. Quantum computing development aims to light up the execution
of a vast and complex set of algorithmic instructions. For its implementation, the machine learning
models are continuously evolving. Hence, the new challenge is to improve the existing complex
and critical machine learning training models. Therefore, the healthcare sector is shifting from a
classical to a quantum domain to sustain patient-oriented attention to healthcare patrons. This paper
presents a hybrid classical-quantum approach for training the unsupervised data models. In order to
achieve good performance and optimization of the machine learning algorithms, a quantum k-means
(QK-means) clustering problem was deployed on the IBM quantum simulators, i.e.,the IBM QASM
simulator. In the first place, the approach was theoretically studied and then implemented to analyze
the experimental results. The approach was further tested using small synthetics and cardiovascular
datasets on a qsam simulator to obtain the clustering solution. The future direction connecting the
dots is the incremental k-means algorithm with the quantum platform, which would open hitherto
unimaginable technological doors.

Keywords: quantum computing; machine learning; k-means clustering; quantum clustering;
clustering algorithm; quantum k-means algorithm; quantum machine learning

1. Introduction

The real fascination with quantum computing lies in its consistent and continuous
computation ability. That is why the actual implementations of quantum computing
technology are all in inaccessible areas wherein continuous monitoring and observation are
necessary, such as navigation, seismology, the pharma industry and many more. Quantum
information processing (QIP) is the turning point in computer science, mathematics, physics
and engineering [1]. QIP is an inference of quantum mechanics to fulfill an information
processing objective. Classical and quantum information can be used jointly to comprehend
phenomena that are impractical for classical information processing, such as the exploration
of an unstructured database with a quadratic speedup. It is associated with the most
exemplary conceivable classical algorithms [2].

Machine learning is another concept wherein machines are trained to solve problems
with learning algorithms where machines are pre-arranged with the capacity to discover
some structure concealed within data. In unsupervised learning, for performing any typical
task, firstly “natural” clusters present in the raw and unstructured data are discovered [3].

The process of grouping datapoints (input data) based on their similarities is called
clustering, described as an unsupervised learning problem to generate training data using a
specific set of inputs but without any label. In order to make a collection of unlabeled data
more comprehensible and manipulable, clustering isthe process of looking for comparable
structural features. Clustering helps in the analysis of unstructured data at the surface level.
The density of the datapoints, graphing and the shortest distance are some of the factors
that affect the cluster formation. The centroid-based clustering method is used to study or
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analyze unstructured data. It bases its operation on how closely the datapoints resemble the
selected center value. The datasets are separated into a predetermined number of clusters
(a set of datapoints or group), and a vector of values references each cluster. The input
data variable shows no difference and joins the cluster compared to the vector value. The
initial step is to define the number of clusters. The k-means algorithm is a centroid-based
clustering technique used for surfacing and optimizing huge amounts of data. Using a
variety of distance metrics, such as the Minkowskidistance [4], Manhattan distance and
Euclidian distance, the clustering methods iteratively calculate the separation between the
clusters and the characteristic centroids (center of the cluster). The massive collection of
healthcare data consented to be easily accessible. However, it was complex data; therefore,
it required a lot of work to efficiently evaluate the data to produce significant judgments
or assessments of the patient’s health. Therefore, a prompt and fast technique is needed
to aid health researchers in creating efficient healthcare policies, drug recommendation
systems and persona-specific health profiles. The quantum clustering method is used
to recognize the complex data patterns from the patient data [5]. The suitability of the
quantum clustering method for complex healthcare data is discussed in Section 3. To fully
utilize the healthcare data research, clinicians use the quantum domain [6]. The strategies
and methods to overcome some of the healthcare challenges by leveraging the power of
quantum and ML include:

• Connect health data from disparate sources
• Determine effective treatments by identifying hidden patterns
• Enable personalized care with precision
• Exploring real-world clinical data for risk stratification
• Create efficiencies in healthcare administration workflows (billing for health

usage etc.)
• Predicting disease progression through quantum power and using casual inference to

improve patient outcomes.

The future of today’s cutting-edge technologyis quantum machine learning (QML) [7].
QML is the fusion of quantum computing and artificial intelligence that will alter the future
in the area dedicated to developing quantum algorithms for machine learning tasks. QML
fills the gaps between the theoretical advances in quantum computing and the deployed
machine learning science [8]. QML focuses on offering synthesis that describes the most
relevant machine learning algorithm in the quantum framework, reducing the complexity
of the discipline involved. QML is a highly new field with much more growth, but we can
already start to predict how it will impact our future [9].

There are a few standard algorithmic primitives that are utilized to construct the
algorithms in the majority of quantum machine learning applications. Quantum techniques
for linear algebra, such as matrix multiplication and inversion, have been applied, for
example, to recommendation systems. Second, supervised or unsupervised learning has
used the capacity to estimate the separations between quantum states, for instance using
the SWAP test [10]. Most of these processes require access to the data on a quantum level,
which can be accomplished by storing the data in particular data structures [11].

Quantum interference is used to modify the underlying probabilities and helps with
the quadratic speedup using Grover’s search algorithm. Regarding the adiabatic optimiza-
tion, the paper [12] explains many use case examples that talk about traffic optimization.
Now, this is a slowly varying quantum evaluation. The paper [13] discussed solving energy
minimization use cases. In the case of linear system algorithms, we leveraged Hamilton in
the simulation to perform the matrix inversion. In the least-squares fitting, an exponential
speedup for well-conditiona filling problems with sparse A is presented in [14]. The tradi-
tional math method requires hundreds of qubits [15]. We described QK-means algorithm,
a quantum clustering algorithm that can be thought of as a quantum equivalent for the
classical k-means algorithm. In more detail, the definition of the QK-means will be pro-
vided in Section 3. We present a comprehensive analysis to demonstrate that the QK-means
produces results that are consistent with those of the classical k-means algorithm.
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In this research paper, experimentation was performed using the quantum k-means
(QK-means) clustering algorithm. Section 2 will cover the introduction and background re-
search about the basics of quantum computing, machine learning, unsupervised clustering
algorithm and the healthcare data-driven approach. Section 3 explains the methodology
adopted for the quantum implementation of the QK-mean algorithm with the help of
the state preparation process flow. The results and discussion portions are exhibited in
Section 4, which presents the findingson two varieties of datasets.

1.1. Literature Review

The paper aims to improve the performance of clustering algorithms. The primary
focus is to improve the QK-means algorithm’s performance along with using fewer qubits.
Beforehand, we studied the existing research by doing a literature review of the research
papers in the field. The earlier works on clustering problems used the hybrid classical-
quantum approach. In the paper “K-means clustering based on improved quantum particle
swarm optimization algorithm”, the authors used the k-means algorithm for faster conver-
gence and accurate results [16]. The k-means algorithm was merged with an improvised
version of the quantum particle swarm algorithm. The amalgamation of both algorithms
providedan effective clustering result [16]. Another approach to using the k-means algo-
rithm was implementing a quantum chaotic cuckoo search algorithm for data clustering [17].
The quantum chaotic cuckoo search algorithm combined the idea of a genetic cuckoo search,
quantum algorithm and k- means algorithm. The performance of the hybrid k-mean al-
gorithm was displayed in the form of the external and internal clustering quality. One
would accept that it would have many enabled products in the healthcare space. However,
the translation into the product has been relatively slow [18]. The different variants of the
k-means algorithm used by researchers so far are shown in the following table (Table 1).

Table 1. Summary of existing variants of hybrid k-means quantum algorithm.

Sr. No. Paper Title Year of Publication Authors Methods

1

“A quantum-clustering
optimization method for

COVID-19 CT scan image
segmentation” [19]

2021 Singh, P., Bose, S.S.

Proposed novel method
for image segmentation
grounded on k-means

and fast forward
quantum optimization

2 “Quantum spectral
clustering” [20] 2021 Kerenidis, I., Landman, J.

Introduced quantum
k-means algorithm for

spectral clustering

3

“Quantum-inspired ant lion
optimized hybrid k-means

for cluster analysis and
intrusion detection” [21]

2020 Chen, J., Qi, X., Chen, L.,
Chen, F., Cheng, G.

Merged quantum
encouraged

optimization with
k-means algorithm for

intrusion detection

4

“A Euclidean Group
Assessment on

Semi-Supervised Clustering
for Healthcare Clinical
Implications Based on

Real-Life Data” [22]

2019 Sohail, M.N., Ren, J., &
Uba Muhammad, M.

Improved the
interpolative separable
density fitting using the
k-means algorithm and

quantum approach

5 “Quantum algorithm for
sequence clustering” [23] 2017 Bishwas, A.K., Mani, A.,

Palade, V.

Quantum paradigm for
sequencing data using

the hidden Markov
model and k-means

algorithm
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1.2. Basic Concepts of Quantum Computing

This section explained a few core concepts of the quantum computing used. In
quantum computing, the small unit of information is known as a qubit. Figure 1 depicts a
glimpse of the basic principles of qubits and how they are pieces of the same concept. The
binary notation and Dirac vector are used to represent the states (Equation (1)).
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Figure 1. The figure shows the basic principles of qubits i.e., the superposition, entanglement and
wave-particle duality. These principles contribute to achieving speedups in quantum computing.

|0〉=
(

1
0

)
and |1〉=

(
0
1

)
(1)

|ψ >= (a|0 + b|1〉) (2)

where a and b are complex numbers and |a|2 + |b|2 = 1.
The 0 or 1 state is used to represent the classical algorithm, but in quantum computing

|0〉 and |1〉 can be used at the same time with the handful probability of being in a state.
The state of a qubit is shown in Equation (2). The probability amplitude is for rev-

eling one the states as an outputwhere|a|2 and |b|2 are used for finding the proba-
bility of achieving|0〉 and |1〉, respectively. The state of a qubit can also be written as
|ψ〉= a|0〉+ b |1. A qubit in such a state is said to be in superposition. So, once a measure-
ment is completed on that qubit, it would yield |0〉 with probability |a|2 and |1〉 with
probability |b|2.

The quantum operations of the quantum gate are applied to transform and change
the qubit states. The norm of the state vector is supposed to maintain the harmony after
applying the quantum gate. It implies that the sum of the squares of the probability
amplitudes should always be equal to one [24]. Hence, the unitary matrices are used to
denote the quantum gates. It is a fact that all the quantum operations are reversible and do
exist. All the quantum gates, except for the measurement gate, fall into this category. So,
the non-reversible operation of the measurement gate is used at the end of the computation.

1.3. Model of Quantum Circuit

Quantum computation operates by harnessing a bundle of quantum gates on the
qubits [25]. The quantum gates denote the quantum operations. As shown in Figure 2,
there are three quantum gates directed to the qubits. The measurement is calculated at the
end to obtain the outcome of the quantum circuit. This entire procedure of the quantum
transition on the qubits is revealed in the system of a quantum circuit, where the timeline
of the qubit is read from left to right. The quantum circuit model is the well-known method
of evolving and exhibiting quantum models [26]. The three-qubit quantum circuit [27] that
formulates entangled states is illustrated in Figure 2. The quantum circuit formulates this
quantum state (Equation (3)). A quantum logic gate, often known as a “quantum gate,” is a
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fundamental quantum circuit that uses a few qubits. To provide a clear image, Figure 2
depicts a quantum circuit example.

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉 (3)
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Figure 2. The quantum circuit for the three-qubit entanglement is depicted in the illustrations. Here,
the controlled-NOT gate is applied, the Hadamard gate is applied to the qubits and the measurement
is applied to every qubit. q0, q1 and q2 are the quantum registers and c0 classical register.

Figure 2 shows a quantum circuit for a two-qubit entanglement.On the qubit q0, the
Hadamard gate and the controlled-NOT gate are applied. The control and the target qubit
are q0 and q1, respectively. A measurement gate is applied to both the q0 and q1 qubit at
the termination of the circuits.

2. The QK-Means Algorithm

We are focused on unsupervised learning and, more specifically, the classic clustering
problem. Given a dataset represented as N datapoints (vectors), we assigned the vectors
to one of the k labels. The initial stage defined the number of C or used an elbow method
to identify the best value of C so that similar datapoints are assigned to the same cluster.
The Euclidean distance is frequently used to evaluate how similar datapoints are grouped.
However, different metrics may be appropriate depending on the problem. To understand
the QK-means algorithm, it was important to know the basics about the working of the k-
means algorithm (Table 2). The k-means clustering was composed of four essential stages as
explained in Table 3. The QK-means firstly identified the preliminary value of the centroids
(center of the cluster). Let (C1, C2, . . . Cn−1, Cn) represent the centroid’s harmony. The
Euclidean distance was used to calculate distances and then the distance matrix at iteration
0 was executed. The flow of encoding, distance calculation and centroid assignment are
shown in Figure 3. A matrix V ∈ RN∗d was used to describe the dataset; each row is a
vector Vi ∈ Rd for V ∈ [N] that represents one datapoint. The centroid of the cluster Ci
for the jth row is j ∈ [k]. We employed a tool created in [8] in addition to the amplitude
to increase the likelihood of achieving an accurate estimate for the distances needed for
the QK-means algorithm. In order to calculate the median, we took several copies of the
estimator from the amplitude estimation technique. A series of quantum algorithms was
created for the encoding of the classical data into quantum data by the quantum computing
approach known as amplitude amplification [28,29], which generalizes the concept behind
Grover’s search algorithm. We assumed that the state space of our quantum system was
represented by an N-dimensional Hilbert space (Equation (4)). If the dataset has V points
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overall, we could locate them by initializing a quantum register |ψ〉 with n qubits where
2n = N into a uniform superposition of each dataset and datapoint N such that:

|ψ〉 = 1√
N

∑N−1
k=0 |k〉 (4)

Table 2. Basic steps for the classical k-means algorithm [30,31].

Step 1: Define the number of clusters

Step 2: Randomly pick the centroid

Step 3: Calculate the distance between the datapoints and centroids

Step 4: Assortment based on the minimum distance

Step 5: All the datapoints converges or no movement

Step 6: Stop the iterations

Table 3. The steps shows the general stages of the quantum k-means algorithm [15,32,33].

Quantum K-Means General Steps

Step 1:

Initialization
|Y> = {|yn>E Cj, I = 1, 2, 3, . . . N}, K,

The centroid (center) of the cluster is X.
Where X = |x1>, |x2>, . . . |xk>

Step 2:

Cluster Assignment
Each datapoint assigned to the nearest cluster

Ck* →{|yn>:d2
q(|yn>, |xk*>) ≤ d2

q(|yn>, |xk>),
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k, 1 ≤ k ≤ K}

Step 3:
Centroid updation

K = {1, 2, 3, . . . , K}, Updation of the centroid for each cluster
|xk> →|GT

KY>
Step 4: Redo the stepsuntil all the datapoints converged

The QK-means algorithm at a high level accomplishes in the identical method as the
classical k-means algorithm. Therein, the quantum subroutines are used for the distance
estimation, then the least value out of the set of elements is discovered. Subsequently, the
matrix multiplication for the procurement of the new centroids as quantum states and
effectual tomography is achieved. Some random initial points should be picked, primarily
when using, for example, the k-means [26]. Assigning the clusters is achieved by executing
Steps 1 and 2. Step 3 and Step 4 calculate the minimum distance and assign a datapoint
to the nearest centroid. In this way, the whole process is restated until the convergence is
achieved (Figure 3). By using encoding techniques, all the classical data are transformed
into a quantum state. For additional processing, the amplitude encoding technique is
utilized. The QK-means algorithm is used to evaluate all the performance metrics as those
of the classical algorithm to perform the comparative analysis after data preprocessing
(normalization and outlier rejection). The accepted input data form is quantitative data
i.e., numeric data. Refs. [34,35] brought up the issue with the dead units. In other words,
if certain units are initialized more distantly from the input dataset than other units, they
instantly stop learning throughout the whole learning process. Due to the fact that only
the Euclidean distance is used for clustering, it suggests that the data clusters are formed
similar to balls. The cluster number must be predetermined. The k-means algorithm can
accurately identify the clustering centers when k = k*. Otherwise, some datapoints will not
be positioned at the centers of the appropriate clusters, which would result in an inaccurate
clustering result. Instead, they are either at locations where distinct clusters converge, or
they are biased away from the specific cluster centers.
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points and clusters with the help of a quantum procedure. To determine the square distance
or inner product (with sign) between the two vectors contained in the QRAM, a quantum
subroutine can be modified. When we achieved quantum access to the vectors and cen-
troids, the distance estimation became very effective. We estimated the distances or inner
products between the vectors with various standards in order to calculate the QK-means.
On a high level, we then estimated the inner product of the unnormalized vectors by first
estimating the inner products between the quantum states |Vi〉 and |Cj〉,corresponding to
the normalized vectors (Equation (5)), and then multiplying our estimator by the product
of the vector norms. Instead of using the inner product, a comparable computation was-
conducted for the square distance. The square distance was calculated using the SWAP test
as explained in [24] or using the distance calculation procedure as given in [36].

The probability of getting zero for each of the Vi is calculated using Equation (5).

〈Vi|Ci〉 =
√

2P0–1 (5)
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For calculating the distances for each and every datapoint, Equations (6) and (7) show
the datapoints assigned to either cluster 1 or cluster 2, i.e., C1 and C2, respectively.

〈V1|C1〉, 〈V2|C1〉, 〈V3|C1〉, . . . . . . . . . . . . . . . . . . . . . ., 〈Vn|C1〉 (6)

〈V1|C2〉, 〈V2|C2〉, 〈V3|C2〉, . . . . . . . . . . . . . . . . . . . . . ., 〈Vn|C2〉 (7)

The U3 gate contains the encoding for the centroids and datapoints features. The first
qubit receives the H gate, which connects the measurement to the conventional register. The
entangled qubits carry out the SWAP test to determine the distance between the datapoints
and centroids. The SWAP test is performed using a combination of control and anti-control
gates. The distance between the first datapoint and centroid 1 (C1) is determined, as shown
in Figure 4, and the distance between the first datapoint and centroid 2 (C2) is calculated.
The probabilities of getting the nearest centroids are measured using the Z gate. The shots
should be chosen according to the requirements and run on the IBM simulator after the
circuit has been run. Place the P0 value into the calculation above

√
(2P0−1) (Equation (5))

after calculating the frequency of achieving0 and dividing it by the total number of shots.
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Figure 4. Using the Hadamard gate on the first qubit, the creation of the centroid distance estimate
calculated the distance between the centroid and the datapoints using the SWAP test, then we per-
formed the measurement to obtain the output. q0 and q1 are the quantum registers in superpostition.
qinp is the quantum register which is used to encode the classical input datapoints. Centroid1 and
Centroid2 quantum register encode the centroid value (cluster center), Creg0 is the classical register.

Step 2: Cluster assignment

After the termination of Step 1, distinctly assess the distance between the datapoints
and k centroid in the different registers and subsequently opt for the index j corresponding
to the centroid adjoined to the given datapoint.

Now, initially take two points as the centroid (i.e., C1 and C2). Calculate the distance
from one datapoint to C1 and C2, then obtain the closest centroid either C1 or C2 (Figure 5).
Update one of the centroids for further calculation. Calculate the distances for all the data
points until the final result appears as a new centroid or updated centroid. With the help of
the new centroid, different clusters will be formed. To prepare the quantum state of the
centroid, we need to make |C1〉a tensor with all the datapoints in superposition.



Quantum Rep. 2023, 5 146

Quantum Rep.2023, 5, FOR PEER REVIEW  8 
 

the datapoints and centroids. The SWAP test is performed using a combination of control 
and anti-control gates. The distance between the first datapoint and centroid 1 (C1) is 
determined, as shown in Figure 4, and the distance between the first datapoint and cen-
troid 2 (C2) is calculated. The probabilities of getting the nearest centroids are measured 
using the Z gate. The shots should be chosen according to the requirements and run on 
the IBM simulator after the circuit has been run. Place the P0 value into the calculation 
above √(2P0−1) (Equation (5)) after calculating the frequency of achieving0 and dividing it 
by the total number of shots. 

 
Figure 4. Using the Hadamard gate on the first qubit, the creation of the centroid distance estimate cal-
culated the distance between the centroid and the datapoints using the SWAP test, then we performed 
the measurement to obtain the output. q0 and q1 are the quantum registers in superpostition. qinp is the 
quantum register which is used to encode the classical input datapoints. Centroid1 and Centroid2 quan-
tum register encode the centroid value (cluster center), Creg0 is the classical register. 

Step 2: Cluster assignment 
After the termination of Step 1, distinctly assess the distance between the datapoints 

and k centroid in the different registers and subsequently opt for the index j corre-
sponding to the centroid adjoined to the given datapoint. 

Now, initially take two points as the centroid (i.e., C1 and C2). Calculate the distance 
from one datapoint to C1 and C2, then obtain the closest centroid either C1 or C2 (Figure 5). 
Update one of the centroids for further calculation. Calculate the distances for all the data 
points until the final result appears as a new centroid or updated centroid. With the help 
of the new centroid, different clusters will be formed. To prepare the quantum state of the 
centroid, we need to make |C1〉a tensor with all the datapoints in superposition.  

 
Figure 5. Labeling shows that the C1 cluster belong to the |0〉state and C2 cluster belongs to the |1〉 
state. 

  

Figure 5. Labeling shows that the C1 cluster belong to the |0〉 state and C2 cluster belongs to the
|1〉 state.

Step 3: Centroid state creation

The assignments of the centroid initially store the index of the datapoint and then
store the label of the centroids. After updating the centroid in the iteration, the label values
will be assigned to the datapoints.

The input data ∑ |i1〉 is in superposition when

|ψin〉 = |i1〉|+〉+|i2〉|+〉+|i3〉|+〉+ . . . . . . + |in〉|+〉+ . . . . . .+ (8)

|ψfin〉= (|i1〉|C1〉 or |i1〉|C2〉)+(|i2〉|C1〉 or |i2〉|C2〉)+(|i3〉|C1〉 or |i3〉|C2〉)+ . . . . . . + (|in〉|C1〉 or |in〉|C2〉) + . . . . . .+ (9)

While estimating the distance between the centroids and datapoints, the datapoints
were assigned to their respective centroids. For assigning the clusters, we useda combi-
nation of quantum gates, i.e.,the Hadamard gate, NOT gate, controlled-NOT gate and
measurement.Initially, the input data ∑ |i1|+〉 in the superposition implies that the dat-
apoints are not assigned yet. Each time the centroid is updated in order to check which
datapoints belong to which state, we needed to measure their corresponding qubits. Sup-
pose that the qubits are in the |0〉 or |1〉 state. If they are |0〉, then the datapoint belongs
to cluster 1 (C1) and if they are |1〉, then that datapoint belongs to C2 (Figure 6 and
Equations (8) and (9)).
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Figure 6. The pictorial description shows all the qubits in the |0〉 state, which will apply when the
datapoint belongs to label 1 or centroid 1.

Step 4: Cluster Updation

Check the first datapoint while taking into account the initial data. Then, take into
account the separation between 〈i1|K1〉 and 〈i1|K2〉 (Figure 6). A SWAP test between i1 and
K1 or K2 is conducted to determine which one will be at the shortest distance. A second
qubit is used to hold the centroids. A new centroid value is encoded in the U gate for
the cluster assignment. The centroid vectors are the input for rotating the value into the
block sphere for a new centroid in the U gate. Take two qubits for |K1〉 and |K2〉 where
continuous updating is required. After choosing the points for |K1〉 and |K2〉, store those
points in the qubits. As |K1〉 and |K2〉 can be prepared as taking the initial state |0〉 and
putting a U gate, similarly prepare |K2〉. As a result of Step4 (Figure 7), each time |K1〉
and |K2〉 are updated, find the distances of the datapoints from the new |K1〉 and |K2〉 and
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follow the same steps to calculate the distances. Show the datapoints in a single qubit
system oncethe labeling of the datapoints is achieved. While doing the SWAP test, the
circuit will deal with the data. However, the |ψin〉 value (Equation (8)) will need labeling.
For example, 16 datapoints need four qubits. Figure 7 shows the labeling of the datapoints.
Implementing the quantum state for the labeling converted the |+〉 state into the |0〉 state.
So, for that, we applied an H operation. If the result (probability) shows the|0〉 state, then
the answer is K1 and we conductthe following operation (Figure 6).
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Figure 7. When a datapoint belongs to label 2 or centroid 2, as shown in the visual representation, all
the qubits are in the |1〉 state.

After updating |K1〉 and |K2〉, again store them into the quantum state and then
perform the SWAP test for second datapoint |i2〉 using a new centroid. If that second
datapoint is nearest to |K2〉, it belongs to C2 (i.e., |1〉). As shown in Figure 6, when the H
gate is applied, the state becomes the |0〉 state, and after applying the H gate and X gate
consecutively, the final output is the |1〉 state (Figure 7). At the end, apply the measurement
to see whichstate the datapoints are in.The cluster assignment, which is a visual depiction
of the label assignment, is shown in Figure 8.
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To apply label 1 or centroid 1, a |0〉 state is formed. To apply label 2 or centroid 2, a
|1〉 state is created. Table 4 shows that the centroids K1 and K2 belong to clusters C1 and
C2, respectively.

Table 4. Example, datapoint 1 (If 1 belongs to K1 it means it is in |0〉 state).

〈K1〉 K1€ C1
〈K2〉 K2€ C2

3. Results and Observations

This section demonstrates the performance of the QK-means algorithm with two differ-
ent datasets, i.e.,the Mucormycosis and cardiovascular datasets (Table 5). The experiment
shows the unsupervised learning to get the C number of clusters (C = 2 or C = 3). The
clusters are then evaluated by the similarity measures to show the cluster quality and
clustering with the defined clusters. We first discuss the clustering results from the small
mucormycosis dataset (synthetic dataset) and then discuss the cardiovascular dataset. The
accuracy rate (A) (Equation (10)) shows the comparison between the different classical and
classical-quantum algorithms.

A =
n

∑
k=1

n(Xk)

n
(10)

where n(Xk) is the number of the quality cluster k and n is the total number of datapoints.
The good clustering performance has the higher accuracy rate.

Table 5. Details of the datasets which contain characteristics of each datapoint, the number of clusters,
the total number of datapoints and selected features.

Datasets Characteristics Clusters Data Points Features

Mucormycosis Integer 2 16 2
Cardiovascular Integer 2 6000 5

We measured all the data, which were calculated by observing the probabilities in
order to obtain the clusters. We employed quantum circuits to store the clusters in the
quantum data state and we also used the SWAP test to measure the Euclidean distance.
The quantum component evaluated these two stages. The centroid (cluster centre) value
was first defined (i.e., k = 2), and these two centroids were then labelled as label 0 and
label 1. When the input data were labelled with the combination ofanti-control and NOT
operations, itwas categorized as cluster 1 (label 1) and cluster 0 (label 0). It was crucial to
first set up a circuit for the final output (Table 6), and only then wereall the qubits measured.
All of the states resulted from the H operation with equal likelihood.Using these steps, we
gained the following two advantages:

• Calculating the distance between the two datapoints and storing huge amounts of
data in the small amount of a qubit.

• Reduced research complexity.

We assigned the labelling of the centroid to the states with four qubits during the
cluster assignment stage. As a result, the circuit’s centroid labelling was used to assign
the clusters. The circuit was created using the control NOT instead of the operation. The
necessary qubit was the sum of all the classical registers. The measurement result was
00001, which denoted a cluster assignment of 0 (read from left to right) and a datapoint
of 0001 (read from right to left) (Table 6). The synthetic input dataset contained the most
datapoints and belonged to label 2. (C2). These datapoints were therefore given label 2
first, followed by label 1 for the remaining datapoints. Based on the likelihood determined
by the QASM simulator (Figure 8). The measurement’s probability demonstrated that
the cluster assignment was done correctly (Figure 5). By computing the distance between
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the clusters and the datapoints, the datapoints were assigned to the matching cluster.
According to the results fetched from the QASM simulator, the datapoints |0000〉|, |0011〉,
|0100〉, |0101〉,|0111〉, |1001〉, |1010〉 and |1100〉 belonged to cluster 2 (C2) and the datapoints
|0001〉, |0010〉, |0110〉, |1000〉, |1011〉 and 〉+ |1101〉 belonged to cluster 1 (C1).

Table 6. Data points along with the labeling and cluster numbers (Mucormycosis dataset).

Data Points Labeling Cluster Assigned

0 0000 C2

1 0001 C1

2 0010 C1

3 0011 C2

4 0100 C2

5 0101 C2

6 0110 C1

7 0111 C2

8 1000 C1

9 1001 C2

10 1010 C2

11 1011 C1

12 1100 C2

13 1101 C1

Final Output = |0000〉|1〉+|0001〉|0〉+|0010〉|0〉+|0011〉|1〉+|0100〉|1〉+|0101〉|1〉+
|0110〉|0〉+|0111〉|1〉+|1000〉|0〉+|1001〉|1〉+|1010〉|1〉+|1011〉|0〉+|1100〉|1〉+|1101〉|0〉.
• IBM QASM simulator
• Provider: imp-q/open/main
• 32 qubit simulator
• Simulator type: General, Context-Aware
• Version: 0.1.547
• Shots: 1024 and 8215

3.1. Results on Mucormycosis Dataset

The paper showed the implementation of a quantum clustering algorithm, i.e.,the
QK-means algorithm on a small dataset (a Mucormycosis dataset containing 16 datapoints),
and the performance was compared with the classical k-mean algorithm (Figure 9). The
size of the feature space affected the QK-means algorithm’s completion time. It was
presented thorough an examination of the QK-means algorithm, which depended on the
characteristics of the data matrix.

The final result also implied that the improvised version of the QK-means performed
much better than the k-means algorithm overall. Depending on the circuits and noise
model, different simulation methods were available. The state console computer was
described by a vector with 2n elements, what we call the statevector. The state vector
simulator supported the additional configurable options and the advanced simulation
methods. The instructions and gates were applied to simulate the quantum circuits by
using the wave function of a statevector and also had the potential to support the general
noise modeling. IBM providedthe high performance QASM simulator for simulating the
quantum circuits with and without noise.
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Figure 9. The bar graph shows the result of classical k-means algorithm and QK-means algorithm
using the accuracy and completeness metrics on the Mucomycosis dataset.

3.2. Cardiovascular Dataset

A dataset from Kaggale.com was chosen in order to predict whether a person has
cardiovascular disease [37]. This dataset included three different categories of data: factual
information, examination feature results and patient-provided information. Additionally,
the category and numerical data was separated from the dataset’s data. The original dataset
comprised 14 characteristics and 70,000 data instances. To compare the association between
the age groups and cardiovascular disease, a graphical depiction was created (Figure 10).
The graphic displays a bar chart with the number of persons on the Y-axis and their age in
years on the X-axis. Figure 10 represents those with cardiovascular illness withthe color
purple, while those without the disease are shown in blue. People in the age range of 56 to
60 were definitely more susceptible to the condition, as shown by the graph. Additionally,
as shown in Figure 11, a visual analysis of the categorical data distribution was carried out.
The bivariate study discussed above demonstrated that the individuals with cardiovascular
disease had higher blood sugar and cholesterol levels than non-sufferers. By eliminating
the outliers, irrelevant data were omitted and the dataset was made more representative.
Diastolic blood pressure (ap_lo) cannot be greater than systolic blood pressure (ap_hi)
since the former refers to the pressure in the arteries between heartbeats, while the latter
measures the greatest pressure the heart can exert while pumping. Additionally, blood
pressure is the numerical difference between systolic and diastolic blood pressure; it cannot
be minus. By taking into account these details, the anomalies from ap_hi and ap_lowere
eliminated in order to remove erroneous blood pressure data. We observed an updated
dataset with a new decreased number, which was equivalent to 6000 quantities ofthe
dataset after the data cleansing process. We employed the amplitude encoding approach
and the U3 gate to encode the features of the datapoints after cleaning the classical data
with the help of classical preprocessing techniques to focus on the significant patient
characteristics. Age, cholesterol, smoking, alcohol consumption and physical activity were
the cardiovascular data characteristics we focused on. The amplitudes or features were
arranged in a block sphere, and the quantum state was subjected to quantum processes
to produce the clusters. The QK-means algorithm performed well on the data related
to cardiovascular disease. Figure 12 presents the accuracy metrics for the QK-means
algorithm’s performance. Recent literature [38] provides a more detailed description of
the measures used. The classical counterpart of the QK-means algorithm obtained an
82% accuracy, but the classical-quantum QK-means method achieved a 91% accuracy in
clustering the input cardiovascular disease data, according to a comparison of the classical



Quantum Rep. 2023, 5 151

k-means, k-means ++ and the QK-means algorithms. Finally, we showed that the QK-
means converged more accurately than the classical clustering techniques (Figure 12). It
was made possible due to the fluctuations that occurredmore quickly from the fleeting
equilibrium of the clusters.
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4. Conclusions and Future Direction

Quantum computing and its algorithms are being extensively used and effective in
various applications. Looking at the track records of the quantum computers that provide
exponential speedups and reduced work time, they are one of the first preferences of
researchers all over the world. This added advantage of speedups proves to be a game
changer for machine learning algorithms since training a data model is usually a time
consuming process, as it involves a big deal of manipulation for the vectors. Hence, with
newly emerging applications for machine learning models, a great deal of interest to
improve the existing training algorithms has been noticed.

This study described a quantum adaptation of the classical k-means algorithm. In
addition, we discussed how scaling would be possible in relation to the present iterations
of the k-means and k-means++ clustering algorithms. Initially, it was discovered that
complex datasets and tensor products may be deployed and computed quickly on quan-
tum computers. However, there are other restrictions that also appliedto this situation
regarding noise and qubit coherence durations. These restrictions were also the reason
for the ineffectiveness and decreased precision of problem-solving. In this research, we
demonstrated the quantum implementation of the k-means algorithm on the IBM quantum
QASM simulator using the SWAP test. To significantly improve the k-means technique, we
constructed quantum clustering through employing intricate quantum circuits and a variety
of quantum operations. The result in Section 4 demonstrated that the classical-quantum
clustering QK-means algorithm outperformed the existing classical k-means and k-means
++ algorithms in terms of cluster quality and accuracy.
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The QK-means algorithm’s limitation was that it must repeat each step when a new
data series was added. After gathering the necessary data from the current clustering and
existing dataset, the incremental clustering was applied to the incremental data. Without
constantly scanning the dataset and executing the algorithm, the new data was matched in
the already-existing clusters or formed in a new cluster. To overcome the classical problem
in the QK-means, the quantum incremental k-means algorithm can be used. The steps of
the proposed quantum incremental k-means algorithm are as follows.

Step 1: Estimate the centroid distance with the help of superposition.
Step 2: Perform entanglement to calculate closest distance between the datapoints and

the centroids.
Step 3: For the centroid state, measure the label register and carry out the

matrix multiplication.
Step 4: Using quantum tomography, update the calculated centroid.
Step 5: Repeat the steps until the formation of all clusters is achieved.
Steps 6: As new data arrives, use quantum parallelism for the best match.
In this study, we discussed the possibility of using quantum clustering techniques

for two types of healthcare data which includeda lower number of features. In the future,
we will work on the complex feature-rich dataset (i.e.,a large number of features). The
quantum incremental k-means algorithm offered a different approach to learning from the
data and aids in finding the needle in a multidimensional dataset. On such data, which
exhibits exploitable separations, diverse densities, etc., the quantum incremental k-means
method performed well. The quantumplatform enabled the development of a network of
connected devices and electronic components by utilizing wireless hardware that was built
from the ground up and a cutting-edge user interface. The incremental k-means algorithm
and quantum platform, two emerging quantum technologies, will open previously unseen
doors in science when combined.
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